Welcome to the Glass Age
111 producing about 350-380 TPD (tonnes/ day). Cold air enters the base of the regenerator at the right and is preheated to 1200-1300ºC, before leaving at the top and entering the combustion chamber. Gas (or oil) is injected into the hot air at the base of the port. This example has four injectors. The iso- temperature surfaces indicate the flame shape that develops. The hot gases radiate heat to the glass melt surface, the furnace walls and the crown, the latter two re-radiating energy to the glass. The waste gases then circulate round the furnace and exit via the left exhaust port, entering the opposite regenerator, and preheating it until the process is reversed after 20-30 minutes. Raw materials enter into the melting basin from two sides. First the batch under the flames is melted. Some designs have a barrier wall (0.8 m high) on the bottom of the furnace to bring the glass from a typical depth of about 1.3 m to the melt surface to aid the removal of small bubbles, the so-called fining process. The glass then dives down into the sunken throat to be delivered into the distributor which connects to the forehearth which takes the glass to the forming machines. The small rods protruding from the bottom of the glass basin are molybdenum electrodes that assist in melting the glass by electrical Joule heating, often called electric boosting. Such a melter is typically about 15 m long by 6 m wide. The second most common glass melter is the cross-fired regenerative float glass furnace. Flat glass is formed after leaving the melter by floating the melt on a molten tin bath. This glass is mainly used for window glass or automotive windshields also solar panels or sometimes LCD products can be produced. The furnaces can be 35-40 m long and 10-12 m wide. The most typical pull rate is 600-800 TPD, but some furnaces produce 1200 or even 1500 TPD. These cross-fired regenerative furnaces alternate firing from opposite sides. They have five to nine burner ports on each side and the preheated air comes from brick regenerators on each side. Injectors introduce gas into preheated air to create flames crossing the glass melt surface, the hot waste gases exiting to the opposite regenerators. This process is reversed about every 30 minutes. Figure 7.3 shows a 600 TPD float furnace with 5 ports with 2 gas injectors on each side. Raw materials are introduced by batch chargers. After melting, the glass is cooled in the working end and leaves by the canal onto the molten tin, where it spreads out to form a flat sheet. Figure 7.2. A 350 TPD container glass melter. Source: Courtesy of Glass Service a.s. (www.gsl.cz) .
Made with FlippingBook
RkJQdWJsaXNoZXIy NTEwODI=